Bonn: Künstliche Intelligenz zur Feststellung von Hirnblutungen

Die Klinik für Neuroradiologie am Universitätsklinikum Bonn und das Institut für Angewandte Mathematik der Universität Bonn haben eine Förderung von rund 160.000 EUR zur automatisierten Detektion von Hirnblutungen mittels künstlicher Intelligenz erhalten.

(v.l.) Prof. Alexander Radbruch, Direktor der Klinik für Neuroradiologie am Universitätsklinikum Bonn (UKB), Dr. Daniel Paech, Oberarzt in der Klinik für Neuroradiologie am UKB und Prof. Alexander Effland, Institut für Angewandte Mathematik der Universität Bonn, vor CT (Computertomographie) Aufnahmen von einer Hirnblutung in der Klinik für Neuroradiologie am UKB.

(v.l.) Prof. Alexander Radbruch, Direktor der Klinik für Neuroradiologie am Universitätsklinikum Bonn (UKB), Dr. Daniel Paech, Oberarzt in der Klinik für Neuroradiologie am UKB und Prof. Alexander Effland, Institut für Angewandte Mathematik der Universität Bonn, vor CT (Computertomographie) Aufnahmen von einer Hirnblutung in der Klinik für Neuroradiologie am UKB.

Universitätsklinikum Bonn (UKB)/J.F. Saba

Hirnblutungen gehören zu den klinischen Notfällen, bei denen ein schnelles Einschreiten essenziell für den weiteren Verlauf ist. Dabei kommt der Radiologie eine zentrale Rolle zu, denn erst die verlässliche Diagnostik der Hirnblutung mittels CT (Computertomographie) ermöglicht die richtige Einordnung der Blutung und die Einleitung weiterer therapeutischer Schritte. Hierbei soll die Radiologie Unterstützung erhalten: Die Klinik für Neuroradiologie am UKB sowie das Institut für Angewandte Mathematik der Universität Bonn erhalten rund 160.000 EUR vom Hausdorff Center for Mathematics, einem Exzellenzcluster der Universität Bonn, zur Entwicklung einer automatisierten Erkennung von Hirnblutungen mittels künstlicher Intelligenz.

„Der Vorteil der neuen Techniken ist, dass sie nicht müde werden und auch um 3 Uhr nachts die gleiche Leistung bringen“, betont Dr. Daniel Paech, Oberarzt in der Klinik für Neuroradiologie am UKB, der das Projekt gemeinsam mit Prof. Alexander Effland, Institut für Angewandte Mathematik, und Prof. Alexander Radbruch, Direktor der Klinik für Neuroradiologie am UKB, leitet. Während der Arzt nach langen Arbeitstagen und insbesondere während der Nachtdienste Gefahr läuft, kleine Blutungen zu übersehen, passiere dies der künstlichen Intelligenz nicht.

Die Forscher beabsichtigen daher, selbstlernende Systeme künstlicher Intelligenz anhand großer Datenmengen zu trainieren, damit diese lernen, Hirnblutungen selbstständig zu detektieren und zu qualifizieren. „Die Kooperation mit der Medizin ist so wichtig, da die Systeme künstlicher Intelligenz nur so gut werden können wie die Daten, anhand derer sie trainiert werden“, so Prof. Alexander Effland. Daher sei die Kooperation mit der Klinik für Neuroradiologie am UKB, die über große Mengen an Bilddaten zu Hirnblutungen verfügt, essenziell.


Weitere Informationen

Zur Pressemitteilung der UKB.